
oo INFINITE BASIC oo

FOR THE TRS-80
GENERAL DESCRIPTION

Written For RAC ET COMPUTES By

T.S. JOHNSTON

and

A.O. JOHNSTON

For Use On The Radio Shack~ TRS-80™
Level II BASIC 16-48K Microcomputer System

© COPYRIGHT 1979, RACET coMPUTEs. Orange, California

IMPORTANT NOTICE
ALL RACET coMPUTEs programs are distributed on an "AS IS" basis without
warranty. Neither RACET coMPUTEs nor the contributor makes any express
or Implied warranty of any kind with regard to this program material,
including, but not limited to the implied warranties of merchantability
and fitness for a particular purpose. Neither RACET COMPUTES nor the
contributor shall be liable for incidental or consequential damages In
connection with or arising out of the furnishing, use or performance of
this program material.

@) 1979, RACET COMPUTES, Orange, California
The Government Law (Title 17 United States Code) has been amended
by a recent Act of Congress, Public Law 92-140, protecting certain sound
recordings against unauthorized dupllcatlon. It Is an Infringement of this
law to copy anuroperly registered cassette designated with the copy­
right notice (e.g.~ 1979 RACET coMPUTEs, Orange, California).

_,.NITE IAIIC TM IYITEII DEICIIIP110II

INTRODUCTION

INFINITE BASIC ia a total ayat• designed to provide the
RADIO SHACK TRS-80(tm) user with a wide range of facilities not
previously available. Total campatability with the existing
BASIC system is maintained. Both TAPE as well as DISK oriented
systems are supported.

Each facility provided with INFINITE BASIC(IB) can be
selectively loaded, thus minimizing ■eaory requir•ents. The use
or IB functions in a users progr• can often dramatically
decrease the exeoution time for many applications. Furthermore,
the availability of preprogrammed complex functions will increase
the users progr8111Ding productivity.

The IB system is distributed as a basic •SYSTEM• module along
with several independent •APPLICATION• modules. The SYSTEM
module provides the BASIC interface, system routines, and loader
required by the APPLICATION modules. The current application
modules available are:

INFINITE STRING: This module provides 50
different functions for string manipulation. This
includes justification, truncation, rotation, trans~
lation, compression, and centering. Also included
are twc SORT string array functions.

INFINITE MATRIX: This module provides 30 ·
functions involving arrays and matrices. Included
in this package are matrix inversion, simultaneous
equations, dynamic array allocation, array copying,
and matrix arithmetic routines. Also included are
arg1.111ent specification functions for creating
generalized user written BASIC subroutines.

I~F!NITE BUSINESS: Thia package provides 20
functions for business applications. Included in
this series are an automatic printer pagination
header/footer system, search atring array, insert
into sorted string array, and hash encoding
functions. Also included is a packed decimal arith­
metic system which can provide both increased
accuracy(up to 500 decimal digits), as well as
eliminating round-off errors associated with binary
floating point numbers.

Additional INFINITE BASIC application systems will be
available to further improve the usefulness or the TRS-80
system.

The descriptions of each of the above APPLICATION systems is
provided in separate manuals. Thia unual doc1111ents the general
system features, procedures, and use of the loader common to all
uses or INFINITE BASIC.

-1-

USING INFINITE BASIC

Use of INFINITE BASIC is a two step process. The first step
is the selection and loading of the desired components required
by the users application. This is described in detail in later
sections of this manual. The second step, described here, is the
actual use of the selected functions in the users application
program.

All facilities within the standard RADIO SHACK BASIC are
available, along with the extensions provided by INFINITE BASIC.
Each INFINITE BASIC function is recognized by the leading •&•.
Documentation of available functions are contained in separate
user manuals for each series available.

INFINITE BASIC functions can have from zero to ten argl.lllents.
Furthermore, some functions provide defaults for unspecified
arguments. The doclll!entation format of an INFINITE BASIC
function is best illustrated with an example. Consider the
Matrix Read Tape function - &MRDT as documented in the MATRIX
section. The title line reads:

&MRDT(A <,LEN <,BN <,TN>>>)

This indicates that up to four arg1.111ents may be specified, A,
LEN, BN, and TN. The use of•<•, and its matching '>', indicate
that the enclosed argument is optional. The•<• and 1 >1 ARE NOT
actually inserted in the users program line, they are for
DOCUMENTATION PURPOSES ONLY. Only trailing argllllents may be
eliminated. The following forms are then valid:

a. &MRDT(A)
b. &MRDT(A,LEN)
c. &MRDT(A,LEN,BN)
d. &HRDT(A,LEN,BN,TN)

Suitable default values will be provided for missing arg1.111ents,
as described in the documentation of each runction. User variable
names may be substituted for the argument names specified in the
documentation. The following forms of the &MRDT function are
also valid:

a. &MRDT(XE)
b. &HRDT(Z,LENGTH)
c. &MRDT(L5,I,J)
d. &HRDT(XX,I3,2,1)

Note that constants may also be used as argl.lllents, as shown in
Item(d) above.

Many INFINITE BASIC functions will accept argllllents of
different modes(integer, single precision, double precision, or
string). Usually, modes are converted automatically where
possible. Some runctions, however, must have the correct mode(ie
the matrix inversion function &HINV will not attempt to invert a
character string matrix!). The documentation will indicate
special mode requirements, or the mode is implied in the function
being used. For example, the block n1.1Dber(BN) and tape
number(TN) are implied integers in the above &HRDT function.

-2-

Each INFINITE BASIC function returns a value. The
significance of this return value is documented for each
function. Some functions will always have a zero or undefined
return value. In all cases the function must either be on the
right of an equal sign, an argllDent of another function or
command, or appear in an input/output statement.

METHOD OF OPERATION

INFINITE BASIC system consists of the interface and
application modules, along with a generalized loader. The loader
assembles the modules that the user requires into a load module.
This load module resides in protected memory, or can be dllDped to
tape or disk for reloading.

The general steps that a user follows in using INFINITE BASIC
are as follows:

1. Determine which functions will be required
in the application.

2. Execute the loader program from either tape
or disk.

3. Specify the names of the functions determined
in Step(1) above when requested.

ij. Specify the memory location where the load
module is to be relocated.

5. If operating from tape, the system will
request loading of the application module
tapes. If operating from disk, the user will
be requested to enter the names of the
application module files.

6. When all modules have been located and
loaded, they will be relocated to the memory
area requested. If operating from tape, the
user will be given the option of saving the
resulting load module to tape. If operating
from disk, the DUMP command parameters are
displayed allowing the user to save the load
module to disk.

7. After the load module is created(or loaded by
a SYSTEM or LOAD command), the user should
enter BASIC and specify the MEMORY SIZE
parameter to protect the load module.

8. INFINITE BASIC must be initialized by execut­
ing a "USR" statement. If in TAPE mode, all
that is required is entering the command:

?USR(1)

-3-

In disk mode, the following sequence is used:

DEFUSR:&Hnnnn
?USR(l)

where "nnnn" is the entry "DEFUSR" value
printed at the conclusion of Step(6) above.
In both cases a message should be
printed indicating proper initialization.

Upon completion of the above steps the program can now use the
selected INFINITE BASIC functions. Note that ONLY Steps(7-8) are
required once a load module has been created.

Once INFINITE BASIC is in memory it does not need to be
reloaded unless power is turned off, or other action by the user
is taken that violates protected memory. The initilization call
specified in Step(8) can be placed at the front of a BASIC
program and executed as often as desired. However, only the first
initialization USR call is needed. Once initialized, INFINITE
BASIC remains active until a "&NOIB" function is executed.

DESCRIPTION OF DISTRIBUTION TAPE CONTENTS

INFINITE BASIC is distributed on one or more tapes in a
compatible format for both tape and disk users. The primary
system distribution tape contains the following:

Cassette File
Side No. Contents

TAPE 1. IBLOAD - Tape version. This module
VERSION contains the generalized INFINITE

BASIC loader program. It is loaded
using the standard "SYSTEM" command
of BASIC.

2. HREL - Tape or disk version. This
module contains all the relocatable
matrix functions. This module is
processed directly by IBLOAD, or
loaded to disk and used with the disk
version of IBLOAD (See DISK side)

3. SREL - Tape or disk version. This
module contains all the relocatable
string functions. This module can
also be processed by IBLOAD or loaded
to disk and used with the disk
version of IBLOAD (See DISK side)

4. XREL - Tape or disk version. This
module contains the BASIC system.
interface and service functions
required for INFINITE BASIC. It is
used by IBLOAD or loaded to disk and
used with the disk version of IBLOAD
(See DISK side)

-4-

Disk
VERSION

1 . IBLOAD - Disk version. This module
contains the di~k version of the
INFINITE BASIC generalized loaded.
It is in a standard "SYSTEM" format
that can be loaded to disk using the
Radio Shack TAPEDISK utility.

2. RELOAD - Disk version. This module
is used for loading the application
relocatable modules to disk. This
includes modules contained on TAPE
SIDE of this tape(MREL, SREL, XREL),
or other INFINITE BASIC application
modules distributed separately (such
as the Business Module).

LOADING INFINITE BASIC TO DISC

The instructions below are given for use of INFINITE BASIC
with disk based syster.:s. The following steps should be used to
load Ii'!Fil•: In: BASIC to disk from the distribution tape. Oiote
that an E!./TER key is assu:,ied at the end of each input line).

Step II Description

1. Load the tape recorder with the DISK VERSICN
side of the distribution cassette . Reset
the tape counter to zero, and position to the
first file on the tape,

2. Execute the TAPEDISK program by entering the
following sequence:

a. TAPEDISK
b. C
c. F IBLOAD/C~D:O 7000 7FFF 7082
d. (note tape counter here)
e. C
f. F RELOAD/CMD: 0 7000 72FF 7000
g. E

This sequence will load the IBLOAD and
RELOAD progroms to disk into files IBLOAD/CMD
and RELOAD/CMD.

3. Load the distribution Tape Side to the
second file. This will be at the approximate
location as noted in Step(2-d) above.

4. Execute the following sequence:

a. RELOAD
b. SPECIFY OUTPUT FILESPEC ?MREL
c. READY CASSETTE
d. SPECIFY OUTPUT FILESP~C ?SREL
e. READY CASSETTE

.5-

f. SPECIFY OUTPUT FILESPEC ?XREL
g. READY CASSETTE
h SPECIFY OUTPUT FILESPEC?
i BREAK

The above process will load the Matrix
package (HREL), String package (SREL) and the
system package (XREL) into the corresponding
files.

At this point all files for use with INFINITE BASIC should
now be loaded to disk.

LOADER DESCRIPTION - IBLOAD

A. General Information.

Each U!F!NITE BASIC function required may be individually
selected for loading into me~ory. The process of selecting and
loading the desired functions into memory is performed by the
IBLOAD prograr.:.

Two versions of the IBLOAD program are provided, one for TAPE
and one for DISK based systems. The operations are essentially
identical except for the source of input and output devices. The
TAPE system is also relocated lower in memory, as required for
smaller memory systems.

The naming conventions used in INFINITE BASIC are as
follows:

a. Function names when used in the users BASIC
program begin with an 1 &1 1 ie &SRTV.

b. Names specified when using IBLOAD are
identical, but begin with 1 @@ 1 , ie @@SRTV.

c. All string functions start with "S" (after
the & or@@).

d. Host matrix functions start with "H" (after
the & or@@). The exceptions are &PLUK,
&PLUG, and &NOIB, which are also in HREL,

e. Other INFit:ITE BASIC application modules
start use a different first letter("B" for
the Business package, for example).

B. Description of Examples.

The use of IBLOAD is illustrated by two examples. The first
is the TAPE version of IBLOAD, and the second the DISK version.
Both examples assume that the user wishes to use three INFINITE
BASIC functions:

-6-

Function

&SRTV
&SRV$
&MSHP

Name

@@SRTV
e@SRV$
@@MSHP

Title

Multivariable sort function.
Random string generation.
Matrix redimension and deletion.

The first two functions will be found in the string
module(SREL) and the last one in the matrix module(MREL). In
addition to the above two function modules, the system will
require other service routines located in XREL.

All three modules must be scanned when using IBLOAD to
retrieve the desired components. Othe~ applications may require
only scannin& two of the modules. In any case XREL MUST BE
SCANNED LAST! It is permissible to scan an unneeded module,
which will only increase the time required for IBLOAD.

C, Specification of Memory Relocation.

IBLOAD creates a load module composed of the desired
functions and required system support routines. The memory
location of the resultant load module must be specified by the
user as ah input parameter to IBLOAD.

The Radio Shack BASIC system has the ability to protect an
area of memory called "protected memory." This is done by
setting the "MEMORY SIZE" parameter after power up, reset, or
when loading BASIC from disk. The location of the resultant
INFINITE BASIC load module must fall within "protected memory."
The amount of space required for protected memory will depend
upon the number of functions selected. The actual memory
requirements will be displayed by IBLOAD after the load module
has been created. This value can subsequently be used when
setting the MEMORY SIZE.

Two options are provided when using IBLOAD for specifying
memory assignment:

1. A minimum low address can be specified for
the start of the load module (L option).
Each compont selected will be placed in
successively higher locations.

2. A maximum high address can be specified for
the end of the load module CH op.tion).
Each component selected will be placed in
successively lower locations.

Trial and error may be required for the optimum selection of
memory parameters.

D. Tape Example,

The following steps are required to build a load module from
tape for the three functions indicated in Section(B) above:

-7-

1. Lo::iC: and oosition the "TAPE VERSION" side of
the cassette tape to the first file.

2. Enter the following Olote that an ENTER key
is assumed at the end of each line of input):

a. SYSTEM
b. IBLOAD
c. I (after IE.LOAD is loaded)

The above process should load and execute
IBLOAD from tape.

3. Enter the function naaes desired(e@ form)
in response to the prOl!ipting message. These
are entered one at a time as shown below:

a. E~lTER SUBROUTINE N,\:-!ES REQUIRED? @@sRTV
b. eesr.Rs
c. ef!MSP.P
d. (just an enter key)

4. The memory size parameters are specified
next. For this example assume that assign­
ment is to start from top of memory down in
a 16K system (high address of 7FFF in hex,
or 32767 in decimal). The following should
be entered in response to the prompting
messages:

a. HIGH/LOW MEMORY ALLOCATION(H/L)? H
b. ENTER STARTING ADDRESS? 32767

The response to (b) could have been expressed
in hex as 7FFFH. Note that the "H" appears
after the number 7FFF.

5. The response to the following prompting
message for tape users should be "T":

a. DISK/TAPE INPUT(D/T)? T

6. The tape cassettee should already be in the
correct position after Step(2) above. This
is the start of the HREL module. The user
should press the ENTER key in response to the
following:

a. READY CASSETTE

After HREL has been scanned (and @@HSHP
selected by IBLOAD), the program will list
a series of entries not yet found. User
specified modules can be identified by two
1 @@ 1 symbols, all others are system entries
that will be resolved in XREL. In this
example @@SRTV and @@SRR$ will be listed as
user entries.

-8-

The user will be prompted twice more with a
"READY CASSETTE". The user should again
respond by pressing the enter key. The
tape should be in the appropriate location
for the remaining SREL and XREL modules.

8. After Step(7) has been completed the system
will display the "MEMORY" usage values in a
single line as shown below:

MEMORY START:X•ssss',END:X•eeee•,
TRA:X 1 402D 1 ,DEFUSR:X'dddd'

where:

ssss =
eeee =
402D =
dddd =

Starting hex location of load module.
Ending hex location of load module.
DOS return (Not used for tape).
Starting hex execution address.

The values of 'ssss' and •eeee' should be
within the desired "protected memory".
Memory size must be protected before using

the load module. If the values are incorrect
the above steps may need to be repeated,
specifying different memory parameters.

The value of 'dddd' will automatically be
placed at the USR transfer location 16526
when the load module is loaded.

9. The next prompting message in this example
will be:

DUMP MEMORY TO TAPE(Y/N)? Y

The response ,y, will initiate the dumping of
the created load module to tape. This step
is not necessarily needed since the memory
already contains the desired load module.
However, the load module will be lost when
the power is turned off, or "protected
memory" is otherwise altered. It is
recommended that the ,y, response be used.
In this case a fresh casssette tape should be
loaded, and the ENTER key pressed in response
to the "READY CASSETTE" message.

10. The load module above can be reloaded by
executing the following sequence:

a. Set or reset memory size as required.

b. Load the cassette with the load module
tape.

.9-

c. Enter the following:
SYSTEM
IB
/ (just a 1 / 1 followed by ENTER)
?USR(1)

The above process will load the users load
module and initialize INFINITE BASIC for
operation. The print of USR(l) should
return 1 1 1 indicating successful initializa­
tion. The USR transfer address may be
redefined as required, since INFINITE BASIC
only uses the USR function for initializa­
tion purposes.

E. Disk ~xarnple.

The steps re~uired for creating a load module in a disk based
systems is essentially the same as for tape systems. The
following discussion emphasizes the differences involved. The
user should read Section(D) above before proceeding with this
section.

The following steps are required to build a load module from
disk for the three functions in Section(B) above:

1. Load the disk containing IBLOAD, MREL,
SREL, and XREL. Refer to the section on
LOADING INFINITE BASIC TO DISK for additional
detail on these files.

2. Execute the IBLOAD program in DOS mode by
entering:

a. IBLOAD

3, Enter the function names desired as described
in Step(3) of the tape instructions.

4. Enter the memory specification parameters as
described in Step(4) of the tape
instructions.

5, The response to the following prompting
message for disk users should be "D":

a. DISY./TAPE INPUT(D/T)? D

6. IBLOAD will request the name of the module to
be scanned. In this example MREL is the
first file to be scanned. The user should
respond to the filespec prompting messaage as
follows:

-10-

a. ENTER INPUT DISK FILESPEC? MREL

After MREL has been scanned (and @@HSHP
selected by IBLOAD), the program will list
a series of entries not yet found. User
specified modules can be identified by two
•@;J• symbols, all others are system entries
that will be r~solved in XREL. In this
example, e@SRTV and @~SRR$ will be listed as
user entries,

7. The user will be prompted twice more with a
"E~TER INPUT DISK FILESPEC". The user should
respond by entering SREL and XREL, which
contain the recaining modules requested by
the user.

8. Refer to in Step(8) of the tape instructions
for a discussion of the MEMORY usage values.
The value 'dddd' in this case, however, will
be used in a DEFUSR statement to initialize
INFINITE BASIC.

9. RP.fer to Step(9) of the tape instructions
for a discussion of dlmlping the load module
just created to tape. An alternate, and most
useful technique, is to dump the load module
directly to disk using the DUMP command. The
exact arguments for the DUMP command are
displayed for the disk user. Replace the
word 'MEMORY• with 'OUMP filespec', where
filespec is the name of the file to contain
the loao module.

10. The load module will be in memory after the
completion of Step(9) above, or it can be
reloaded from tape or disk using the SYSTEM
cocmand(see tape instructions - Step(lO)) or
the DOS LOAD command. To initialize INFINITE
BASIC the user must first enter BASIC in the
normal fashion, secifying the MEMORY SIZE
parameter. The following sequence should
then be executed:

a. DEFUSR:&Hdddd (see Step(8) for dddd)
b. ?USR(l)

This needs to be done only after reloading
BASIC, although it can appear at the front of
every program run. The DEFUSR value can also
be redefined to some other value, since
INFINITE BASIC uses the USR function only for
initialization purposes.

-11-

INFINITE BASIC STRING AND MATRIX APPLICATION MODULES

INTRODUCTION

This section describes the use of the MATRIX and STRING
functions distributed with INFINITE BASIC. The first part of
this section provides general information for each logical group
of functions. Contained in the last part of this section are
detailed formal descriptions of each INFINITE BASIC function.

The General Information Manual contains information required
for an understanding of the material presented in this manual.
In particular, the user should fully understand the section
"Using Infinite Basic" before preceeding with the discussion
below.

The discussion below is divided into the MATRIX and STRING
sections. The first group(Matrix Arithmetic Functions) provides
a complete BASIC program example, including the IBLOAD sequence.
Subsequent groups include just the BASIC examples needed to
illustrate a typical usage of the functions involved.

The examples shown each have a DEFUSR:&Hxxxx command at Line
CS, where xxxx is the value supplied by the IBLOAD program. The
example for the first group shows a specific value for xxxx.

MATRIX FUNCTIONS - GENERAL DESCRIPTION

A. Matrix Arithmetic Functions(In order by index)
MAAD,MADV,MAMP,MCPY,MASB

1. Description - This group of functions perform the general
operation:

A = A # B or A : B

where the# is the operator+,-,•, or/. The copy operation is
also provided. The arithmetic and copy operations are performed
element by element in order by corresponding index values.

Multi-dimensional arrays may be specified as argllDents to
these functions, along with maximum index values to be used.
Furthermore, the number of dimensions of A and B need not be the
same. Corresponding elements(by index) are involved in the
operation, consistent with the actual dimensions of A, B, and the
maximums specified by the user in the function. Maximum index
values of "011 are assumed for missing dimensions in A or B, as
shown in the examples below:

DIM(A) DIM(B) FUNCTION MAXIMUM USED
-------- ------------1,2,3 2,3 1,2,0

3,4 1,6,3 1,4,0
3,4 1,6,3 2,3 2,3,0
3,4 1,6,3 8,8,8 1,4,0
3,4 2,3 4,ll 3,3

All elements beyond the maxim1.111 index values are not used or
changed during the operation.

-12-

The arithmetic operations are performed element by element.
The I and I operations are scalar operations, NOT the al
mathematical operations of matrix multiply or inverse(see MHPY
and MINV for the mathematical functions).

2. Program Example - The example below illustrates the
techniques required to perform the operation:

CD= (A+ B) / C

where A, B, C, and CD are multi-dimensioned arrays. The BASIC
program is shown below.

5 DEFUSR:&HE898: PRINT USR(1)
10 DIM A(1,2,3),B(3,2,1),C(3,3,3),CD(2,3)
20 FOR I:O TO 1: FOR J:O TO 2: FOR K:O TO 3
30 A(I,J,K):1 1INIT MATRIX A
40 B(K,J,I):3 •!NIT MATRIX B
50 NEXT: NEXT: NEXT
60 FOR I:O TO 3: FOR J:O TO 3: FOR K:O TO 3
70 C(I,J,K):2 1INIT MATRIX C

EXT: NEXT: NEXT
90 IR:&MCPY(CD,A):GOSUB 200 •COPY MATRIX A TO CD
100 IR:&MAAD(CD,B):GOSUB 200 'ADD MATRIX B TO CD
110 IR:&MADV(CD,C,2,1):GOSUB 200 'DIVIDE CD BY B
120 END
200 FOR I:O TO 2: FOR J:O TO 3
210 PRINT CD(I,J);
220 NEXT: PRINT" ";: NEXT: PRINT
230 RETURN

Note in the above example different array sizes are used.
Furthermore, the final divide step specifies that the maximum
element sizes (2,1) are to be used. Lines 190-110 could be
replaced by the more convenient form:

90 IR:&MCPY(CD,A) OR &MAAD(CD,B) OR
&MADV(CD,C,2,2)

where the operations are performed left to right. For
efficiency, the minimum subscript case(2,1) should have been
forced on the first step, ie:

90 IR:&HCPY(CD,A,2,2) OR &MAAD(CD,B) OR
&MADV(CD,C)

This produces the same result for the elements thru (2,2).
Non-zero elements would appear in other elements of CD only in
the first two forms above.

3. IBLOAD Example - Given below is the sequence required to
build and load the INFINITE BASIC load module, and to execute the
example BASIC program. The "Loader Description" section of the
INFINITE BASIC General Description Manual provides step-by-step
instructions for using IBLOAD with Tape(section D) or
Disk(section E). Given below is the input and resulting outputs
for the matrix example using both Tape and Disk systems. Step
numbers noted in the comments correspond exactly the those giver
in D and E.

a, Tape Sequence

>SYSTEM (Step # 1s 1-2)
1? IBLOAD
'? I
IBLOAD - TAPE VERSION 1,0 - COPYRIGHT 1979,

RACET COMPUTES
ENTER SUBROUTINE NAMES REQUIRED? @@MAAD
? @@HADV (Step #3)
? @@HCPY
?
HIGH/LOW MEMORY ALLOCATION(H/L)? H (Step #4)
ENTER STARTING ADDRESS? 7FFFH
DISK/TAPE INPUT(D/T)? T (Step #5)
READY CASSETTE (Step #6)
OK OK OK OK OK OK OK OK OK OK OK
FOLLOWING SUBROUTINE(S) NOT YET FOUND
@AGETX @AINCD @AINTN @APSHX @APUTX
@APUTY @ARGN @ARGV eASUB
READY CASSETTE (Step #7)
OK OK OK OK OK
MEMORY START:X 17889 1 ,END:X 17FFF 1 ,TRA:X 1 402D 1

DEFUSR:&H7897 (Step #8)
DUMP MEMORY TO TAPE(Y/N)? Y (Step #9)
READY CASSETTE
XD TAPE DUMP COMPLETED OK
XE PROCESSING COMPLETED
READY
>SYSTEM (Step #10)
1 ? IB
*? I
READY
>CLEAR
>CLOAD"A" (Load matrix example above)
READY
>5 PRINT USR(1) (Don't use DEFUSR for tape)
RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
OK

1 1 1 0 1 1 1 1 0 0 0 0
4 4 4 0 4 4 4 0 3 3 3 0
2 2 4 0 2 2 4 0 2 2 3 0

READY
>RUN
1 1 1 0 1 1 1 1 0 0 0 0
4 4 4 0 4 4 4 0 3 3 3 0
2 2 4 0 2 2 4 0 2 2 3 0

READY

b. Disk Sequence

DOS READY (Step #1)
IBLOAD (Step #2)
IBLOAD - DISK VERSION 2.0 - COPYRIGHT 1979,

RACET COMPUTES
ENTER SUBROUTINE NAMES REQUIRED? @@HAAD
? @@MADV
? ~@MCPY
?

-14-
(Step #3)

HIGH/LOW MEMORY ALLOCATION(H/L)? H
ENTER STARTING ADDRESS? FOOOH
DISK/TAPE IN?UT(D/T)? D
ENTER INPUT DISK FILESPEC? MREL
FOLLOWING SUBROUTINES(S) NOT YET FOUND
@AGETX @AINCD @AINTN @APSHX @APUTX
@APUTY @ARGN @ARGV @ASUB

(Step #4)

(Step #5)
(Step #6)

ENTER INPUT DISK FILESPEC? XREL (Step #7)
MEMORY START:X 1 E88A 1 1 END:X 1F000 1 1TRA:X 1402D 1

DEFUSR:&HE898
DUMP MEMORY TO TAPE(Y/N) N
XE PROCESSING COMPLETED

DOS READY

(Step #9)

DUMP MEX1/CMD:1 (START:X 1 E88A 1 ,END:-X 1F000 1 ,

TRA:X 1402D 1)

DOS READY
MEX1 (STEP #10)
BASIC
HOW MANY FILES?
MEMORY SIZE 59500
RADIO SHACK DISK BASIC VERSION 1.1
READY
>LOAD "MEX1/BAS"
READY
>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979

RACET COMPUTES
OK

1 1 1 0
4 4 4 0
2 2 4 0

READY

1 1 1 0
4 l! l! 0
2 2 4 0

0 0 0 0
3 3 3 O
2 3 3 0

Note that in both examples above only the MREL and XREL files
were scanned. For tape users this requires positioning the tape
before responding to 11 ?.EADY CASSETTE". The exact location on
tape can be determined by noting the tape counter while doing a
full scan. It was not necessary to perform the load to memory
operation(Step #10) in the examples above. Subsequent uses of
the created load module would require the load as indicated(after
a power off for example).

To determine memory size, the START parameter must be
converted from hexadecimal to decimal. In the tape example
above(Step #8) the resulting load module started at X'7889 1 which
is expressed in hex~decimal. Similarly, the disk example(Step
#7) indicates a start at X1 E898 1 • BASIC requires a decimal value
when being initialized. To convert, perform the following
multiplication sequence:

7*4096 + 8*256 + 8*16 +9 (30857 is the memory size)
14*4096 + 8*256 + 8*26 +10 (59530 is the memory size)

Remember that in hexadecimal, ABC DEF are 10 11 12 13 111 and
15.

-15-

The DEFUSR statement is not required when using the tape
sequence, as shown in Line #5, The PRINT USR(1) will initialize
INFINITE BASIC. Note that the first time the PRINT USR(1) is
issued a full message is produced, as illustrated in the Tape
example.

B. Matrix Arithmetic Functions(Sequential, B Repeated)

1. Description - This group of functions performs the
general operation:

A : A I B or A = B

where the# is the operator+,-, 1 , or/. The copy operation is
also provided. The arithmetic and copy operations are performed
element by element in sequential order. The arrays A and B are
processed as if they were singly dimensioned arrays, even if
multi-dimensional. The elements of Bare recycled until A is
full or "N" elements have been processed.

Multi-dimensional arrays are stored in memory by BASIC with
the first index value varying fastest. Consider the array B(I,J)
with a DIM 8(1,2):

Array J-->
B(I,J) 0 1 2

0 3 5

I =
2 4 6

The data will be processed element-by-element as 1, 2, 3, 4,
5, 6, 1, 2, 3, ... etc. Similiarly, the Array A is processed with
the first subscript varying fastest.

2. Program Example - The example below illustrates the
techniques required to perform the operation:

CD: (A+ 8) / C

where A, B, C, are multi-dimensional arrays Of the same sizes,
and CD is a singly dimensioned array. The BASIC program is shown
below.

5
10
20
30
40
50
60
70
80
90
200
210
220
230

DEFUSR:&Hxxxx: PRINT USR(1)
DIM A(1,2),B(1,2),C(1,2),CD(14)
N:1
FOR J:O TO 2: FOR I:O TO 1

A(I,J):N: B(I,J):N: C(I,J):N: N:N+1
NEXT: NEXT
IR:&HELC(CD,A):
IR:&MELA(CD,B):
IR:&MELD(CD, C):
END
FOR I:O TO 14

PRINT CD(I);
NEXT: PRINT
RETURN

GOSUB 200
GOSUB 200
GOSUB 200

-16-

1COPY A TO CD
1ADD B TO CD
'DIVIDE CD BY C

The results from running the above program are shown below .

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
OK
1 2 3 4 5 6 2 3 4 5 6 1 2 3
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
READY

Note that the arrays A, B, and C repeat 2 1/2 times to fill
the array CD.

C. Matrix Scalar Arithmetic Functions
MSAD,MSMP,MSSB,MSDV

1. Description - This group of functions performs the
general operation:

A = A 11 S

where# is the operator+,-,•, or/, and Sis a scalar value.
The same scalar 11S11 is applied to each element of A, or until N
elements have been processed. The array A is procesed as if it
were a singly dimensioned array, even if it is multi-dimensional.
The first subscript varies fastest similar to the sequential
matrix arithmetic functions(B above).

2. Program Exal!lple - Given below is an example of adding the
scalar 11 211 to each element of a multi-dimensioned array A.

5 DEFUSR:&Hxxxx: PRINT USR(1)
10 DIM A(1,2,3)
20 N:O
30 FOR K:O TO 3: FOR J:O TO 2: FOR I:O TO 1
40 A(I,J,K):N: N:N+1
50 NEXT: NEXT: NEXT
60 IR:&HSAD(A,2)
70 FOR K:O TO 3: PRINT "K=";K: FOR I:O TO 1
80 FOR J:O TO 2: PRINT A(I,J,K);: NEXT: PRINT
90 NEXT: NEXT:
100 END

The results from running the above program are shown below:

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979

RACET COMPUTES
OK K:2
K:O 14 16
2 4 6 15 17
3 5 7 K:3

K:1 20 22
8 10 12 21 23
9 11 13 READY

-17-

18
19

24
25

D. Matrix Equal Function
MEQU

1. Description - This group consists of the single function
MEQU. It is similar to HELC in that it copies elements from an
array B to an array A in sequential order(See group(B) above).
However, this routine differes from MELC in the following
respects:

a. The elements of Bare not repeated during the
process. If Bis smaller than A the ending
elements of A will be unchanged. If Bis
larger than A then ending elements of B will
not be copied.

b. Arrays A and B must both be of the same mode,
either Integer, Single, or Double precision.

c. The processing speed of this function is faster
than the corresponding MELC. It also requires
less memory.

2. Program Example - The example below illustrates copying
the multi-dimensioned array B into a larger array A.

5 DEFUSR:&Hxxxx: PRINT USR(1)
10 DIM A(30),B(1,2,3)
20 N:1
30 FOR K:O TO 3: FOR J:O TO 2: FOR I:O TO 1
40 B(I,J,K):N: N:N+1
50 NEXT: NEXT: NEXT
60 IR:&MEQU(A,B,22)
70 FOR 1:0 TO 30
80 PRINT A(I);
90 NEXT: PRINT
100 END

Running the above program produces the following results:

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 0 0 0 0 0 0 0 0 0
READY

In the above example there are 24 available elements in B. Of
these 24 only 22 are copied as requested in Line #60.

E. Matrix Mathematical Functions
HIDT, HINV, HHPY, HTRN, HEON

1. Description - This group of functions perform the formal
mathematical operations of Identity, Inverse, Multiply,
Transpose, and Simultaneous E~uations solution. Functions MINV,
HHPY, and HEON are restricted to two-dimensional single or double
precision arrays. HIDT and HTRN may be used with
multi-dimensional arrays. Additional information on these
functions can be obtained from standard mathematical texts.

-18-

2. Program Example - The example below illustrates the use,
HINV, HHPY, and HEQN. Assume that the set of equations below

are to be solved:

2•x1 + 3•x2 +4•x3 = 5
3•x1 + 2•x2 +6•x3 = 7
8•x1 + 4•x2 +1•x3 = 3

This is expressed in the standard mathematical notation as:

A • X : B

where

A =
2 3 4
3 2 6
8 4 1

X1
X = X2

X3

Two methods are possible to solve the
INFINITE BASIC. HINV and HHPY can be
operation of Inverse(A) • B to give
directly to produce the desired result.
illustrates both methods.

5 DEFUSR:&Hxxxx: PRINT USR(1)

5
B = 7

3

set of equations using
used to perform the
X, or HEQU can be used

The example below

10 DIM A(10,10),AA(10,10),AI(10,10)
20 DIM B(10,0),X(10,0),BB(10)
30 DATA 2,3,4,5,3,2,6,7,8,4,1,3
40 FOR I:O TO 2 1READ ARRAYS A & B
50 FOR J:O TO 2: READ A(I,J): NEXT
60 READ B(I)
70 NEXT
80 IR:&MEQU(AA,A): IR:&MEQU(BB,B) •SAVE FOR MEQN
90 IR:&MINV(AA,AI,3) 'INVERT AA--> AI
100 IR:&MMPY(AI,B,X,2,2,0) 'MULTIPLY AI• B --> X
110 FOR I:O TO 2: PRINT X(I,O);: NEXT: PRINT
120 IR:&MEQN(A,BB,3) 1USE MEQN TO SOLVE
130 FOR I:O TO 2: PRINT BB(I);: NEXT: PRINT
140 END

The results from running the above program are shown below:

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
OK

.146667 .2 1.02667

.146667 .2 1.02667
READY

In the above example the correct choice of number of
dimensions of X and B is critical. MMPY and MINV require
two-dimensional arrays for B and X. MEQN requires a singly
dimensioned array. Both MINV and MEQN destroy the matrix being
inverted or solved. Line #80 was required to save Matrix A for
use in Line #120. Additional saves would be required if A was
need in later steps. The arrays specified above were dimensioned
much larger than required for illustration purposes only. The
value "10" could be replaced by •2• for this simple example.

-19-

Also note that the arguments used in MMPY are the highest index
values rather than the number of elements.

The use of MEQN is recommended for solving simple equations.
This function requires less memory, fewer user instructions, and
less computer time than MINV/MMPY. However, MINV can be expected
to be more accurate for larger or more sensitive systems of
equations.

F. Matrix Input/Output Functions
MELR, MRST, MRDT, HWRT

1. Description - MELR is used
from BASIC "DATA" statements. HRST is
start at a specific DATA statement.
input and output data to cassette tape.

to read data into a matrix
used to position BASIC to

MRDT and HWRT are used to

MELR correspondes to the BASIC "READ" statement for matrices.
This allows the user to conveniently initialize matrices. The
MRST function perfor~s a function similar to "RESTORE", but can
be used to position to any DATA statement. This can be used for
normal READ statements as well as with MELR.

MRDT and HWRT provide an efficient means of using cassettee
tape for large amounts of data. These fUnctions provide the
capability of reading and writing entire blocks of data. In
addition, block checksums are used to validate that the data read
is correct. Block identification numbers are also provided to
allow automatic selection of data to be read.

Both MRDT and HWRT process matrices sequentially similar to
the arithmetic functions(See B, c, and D above). Multi
dimensional arrays will be processed with the first index varying
fastest. The number or dimensions and sizes or arrays can be
different for a particular HWRT and subsequent MRDT. The user
must, however, must be aware that positioning of data in
multi-dimensional arrays may be different under these
circumstances. MRDT also skips remaining data on tape .that
exceeds the size or the array being used.

The user must insure that the mode or the data being read
from tape is ident·ical to that originally written to tape. An
Integer array written to tape must be read back into another
Integer array. This also applies to Single Precision, Double
Precision, and String arrays.

2. Program Example - The example below illustrates
initializing several matrices using MELR and MRST, and then
writing and subsequent reading of the data to/from tape. Single
dimensioned arrays are used in the examples, although
multi-dimensioned arrays could also be used as described above.

5 DEFUSR:&Hxxxx: PRINT USR(1): CLEAR 1000
10 DIM IAS(10),SPl(10),DP#(10),CH$(10)
20 0,1,2,3,4,5,6,7,8,9,10
30 o.o,1.1,2.2,3.3,4.4,5.s,6.6,7.7,8.8,9.9,10.10
40 o.o,1.0Do1,2.0Do2,3.0Do3,4.oDo4,5.oDos

6.0D06,7.0D07,8.0D08,9.0D09,10.0D10

-20-

50 DATA "STRING #0", "STRING #1","STRING #2",
"STRING #3","#4","","TEST #6","STRING #7",
"TEST #8","TEST #9","TEST #10"

60 IR:&MELR(IAS) 1READ IAS ARRAY
70 IR:&MRST(SO) 'POSITION TO STRINGS
80 IR:&MELR(CH$) 'READ STRING ARRAY
90 IR:&MRST(30) 'POSITION SP #1S
100 IR:&MELR(SPI) •READ SP #1S
110 IR:&MELR(DP#) 1READ DP #1S
120 CHD "T" •TURN OFF CLOCK
130 IR:&HWRT(CH$,11,1) •WRITE CH$ TO TAPE
140 IR:&HWRT(DP#,11,2) 'WRITE DP# TO TAPE
150 IR:&HWRT(SPl,11,3) 1WRITE SP! TO TAPE
160 IR:&HWRT(IAl,11,4) 1WRITE IAS TO TAPE
170 INPUT "REWIND TAPE, PRESS ENTER";A$
180 IR:&MRDT(CH$,11,1) 1 READ CH$ FROM TAPE
190 IR:&MRDT(IAS,5,4) 'READ IAS FROM TAPE
200 INPUT "REWIND TAPE, PRESS ENTER";A$
210 IR:&MRDT(DP#,23,2) •READ DP# FROM TAPE
220 IR:&MRDT(SPl,11,3) •READ SP! FROM TAPE
230 CHD"R" 'TURN CLOCK BACK ON
240 END

The results from running the above program are shown below:

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES,
OK
REWIND TAPE, PRESS ENTER?
REWIND TAPE, PRESS ENTER?
READY

The MELR Function was used above to initialize the arrays. The
arrays were read out of sequence by use of the MRST function, as
shown in Lines #70 and #90.

The HWRT function was used to write the four arrays to tape.
Block n1.111bers #1-4 were assigned to each array written to tape.
Th~ use of block n1.111bers allows automatic selection of the
correct block by MRDT. In this example, block #4 was read after
block #1, automatically skipping blocks 2-3 as shown in Line
#190. This same statement also illustrates reading only the
first 5 elements. Line #210 specifies more elements(23) to be
read than are available. The return value(IR) would indicate
only 11 were actually read.

G. Matrix Shape Function
MSHP

1. Description - The matrix shape function allows the user
to dynamically modify the size and nmber of dimensions of any
array. Arrays may also be deleted from memory, freeing space for
other use.

-21-

The total size of an array can be either increased or
decreased. If the array size is increased only the added
elements are initialized to zero, all others remain the same.
Data elements will be permanently erased if the array size is
decreased.

The array processed by HSHP overlays the original array. The
data in the resulting array is NOT rearranged to conform to the
new dimensions. The user should be aware that data is stored in
memory with the first index varying fastest, as discussed in the
sequential matrix functions(See B, c, and D above).

2. Program Example - The example below illustrates
initializing a single dimensioned array , reshaping it to a two
dimensional array for processing, and then deleting the array.

5 DEFUSR:&Hxxxx:
10 DIM A(25)
20 FOR I:O TO 25
30 A(I):I
40 NEXT

PRINT USR(1)

'INITIALIZE A

50 IR:&HSHP(A,4,5)
60 FOR I:O TO 4
70 FOR J:O TO 5:

'RESHAPE A
'PRINT ARRAY

PRINT A(I,J);: NEXT: PRINT
80 NEXT
90 IR:&HSHP(A)
100 END

'DELETE ARRAY A

The result from running the above program is shown below: .

>RUN
INFINITE BASIC VERSION 1.0 - COPYRIGHT 1979,

0 5
1 6
2 7
3 8
IJ 9

READY

RACET COMPUTES
10 15 20 25
11 16 21 0
12 17 22 0
13 18 23 0
14 19 21' 0

Note that the last four elements are zero since the new array was
larger than the original array.

H. Matrix Call and Return Functions
MCAL, MRET

1. Description - This pair of functions allows the user to
create user written BASIC subroutines with generalized calling
arguments. The GOSUB command of BASIC allows the user to create
a subroutine that can be called from different locations.
Different variables may, however, not be processed directly by
this technique. For example, a subroutine to sum the contents or
an array must always have the data in the same array.

MCAL allows the user to temporarily specify variable names
corresponding to those used in a subroutine. MRET restores the
variable names to the original definitions. Scalar constants,
scalar variables, and arrays may be passed as arguments to MCAL.

-22-

2. Program Example - The example below illustrates the use
or a subroutine to calculate the sum and average or an array and
to calculate percentages or each element. This subroutine is
used with two different arrays.

5 DEFUSR:&Hxxxx: PRINT USR(1)
10 DIM A(10),B(10): N:O
20 FOR I:O TO 10 'INITIALIZE A & B
30 A(I):I: B(I):I+10
40 NEXT
50 P$: 11 A, 1011 : GOSUB 100 1 CALL SUB200(A, 10)
60 PRINT "AVERAGE:";AV
70 P$:"B,5": GOSUB 100 'CALL SUB200(B,5)
80 PRINT 11AVERAGE=";AV
90 END
100 Q$: 11 &C,N,AV": IR:&HCAL(P$,Q$) 'RECEIVE ARGUMENTS
110 S:O.O 'CALCULATE SUH
120 FOR I:O TON
130 S:S+C(I)
140 NEXT
150 AV:S/(N+1) 'CALCULATE AVERAGE
160 FOR I:O TO N I CALCULATE S
170 C(I):100.0*C(I)/S
180 PRINT C(I); 'PRINTS
190 NEXT: PRINT
200 IR:&HRTN(P$,Q$) 'RESTORE ARGUMENTS
210 REIURN 'RETURN TO CALLER

The results from running the above program are shown below:

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
OK
0 1.81818 3.63636 5.45455 7.27273 9.09091
10.90901 12.7273 14.5455 16.3636 18.1818

AVERAGE: 5
13.3333 14.6667 16 17.3333 18.6667 20

AVERAGE: 12.5
READY

In the above example note that array C was not dimensioned.
It is a "dummy" array used only in the subroutine. The actual
arrays used in place of C are A and B. Scalars passed as
constants must have their "dummy" variable names initialized, as
shown in Line #10. A scalar variables, such as "AA" and "AB"
above, do not need to be initialized. Only one of the parameter
specification strings (P$ or Q$ above) need explicitly indicate
which variables are arrays. This is done by preceeding the array
variable name with an"&", as shown in Line# 100.

-23-

I. Memory W· Fetch/Store Functions
PLUK, PLUG

1. Description - These two funtions allow the user to fetch
or store a two byte integer to memory. This is similar to the
PEEK and POKE which allow fetch and store of a single byte. The
PLUK function simply fetches the two byte integer from a
specified memory address. PLUG simultaneously fetches the old
contents at a specified memory address and stores a new word at
that address. Both functions assume data is in the standard low
order byte first format.

2. Program Example - The example below shows how to replace
the screen DCB pointer with the printer DCB pointer. This allows
everything normally displayed on the screen to be diverted to a
line printer. The pointer is restored after a single line has
been printed.

5 DEFUSR:&Hxxxx: PRINT USR(1)
10 DEFINT I
20 I1:&PLUK(16422) •FIND PRINTER PTR
30 I2:&PLUG(16414,I1) 'REPLACE SCREEN PTR
40 PRINT "THIS LINE GOES TO THE PRINTER"
50 I1:&PLUG(16414,I2) •RESTORE SCREEN PTR
60 END

The results from running the above program are shown below:

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
OK
THIS LINE GOES TO THE PRINTER
READY

The PLUK and PLUG in Lines #20-30 could have been replaced by
the single expression I2:&PLUG(16414,&PLUK(16422)).

-24-

STRING FUNCTIONS - GENERAL DESCRIPTION

A, String Manipulation Functions
SBJ, SDS, SIV, SLJ, SLR, SLS, SLT, SRJ
SRR, SRS, SRT, SSI, STC, STJ, STP

1. Description - These string functions are used to
transform existing character strings into new forms. In general,
one or more strings along with other parameters are argments to
each of these functions. The return value of each function is
the resulting desired character string. All of these functions
create new character strings, and do not modify the original
character str~ng arguments.

Several of the functions utilize a "Skip" character argument
denoted by "X$". This 1s used to indicate which character is to
be skipped or removed during the indicated operation. For
example, the function:

&SBJ$(S$ <,X$>)

eliminates the "Skip" character from both the left and right
s!des of the character string S$. The default value for X$ is a
blank character. Only the first character of X$ is used as the
skip character. The results from those functions using the skip
character is as follows:

a. SLJ, SRJ - The justification functions rotate the
string left or right to the first non-skip
character. The resulting string is the same
length as the original string.

b. SBJ, SLT, SRT - The truncation routines remove
skip characters resulting in shorter strings.

c, STJ - The text justification function removes
skip characters from both ends of the string,
but inserts skip characters between words. The
resulting total length is specified by the user.

d, STP - The text pack functions removes redundant
skip characters from the ~nds of the string and
between words, resuting in shorter strings.

e. SLS, SRS - The .string shift functions shift the
the string left or right a specified number of
locations. Skip characters are added to the
front or end of the string to maintain the same
length string.

The remaining
character argument.
indicated below:

functions in this group do.not use the skip
The length may, however, be modified as

a. SLR, SRR, SIV - The string left and right rotate
functions shift the contents of the string,
inserting the shifted out characters at the
other end of the string. The string invert
function reverses the order of the characters
in a string. The total length of the string
remains the same for all three of these
functions.

-25-

b. SDS - The substring delete function eliminates
characters from a string, resulting in a shorter
length.

c. SSI - The substring insert function increases the
length of a string.

2. Program Example - The example below illustrates all the
functions in this group. The skip character"•" is used where
applicable in the examples for illustration purposes.

5 DEFUSR:&Hxxxx: PRINT USR(1): CLEAR 1000
10 X$="·"
20 SS: 11 ••••• ABC .. DE.FGH, .. IJ.,.,n
30 A$:S$: PRINT "S$";
40 GOSUB 500
50 A$:&SBJ$(S$,X$): PRINT "&SBJ$(S$,X$)";
60 GOSUB 500
70 A$:&SDS$(S$,7,2): PRINT "&SDS$(S$,7,2)";
80 GOSUB 500
90 A$:&SIV$(S$): PRINT 11&SIV$(S$)";
100 GOSUB 500
110 A$:&SLJ$(S$,X$): PRINT "&SLJ$(S$,X$);
120 GOSUB 500
130 A$:&SLR$(S$,7): PRINT 11&SLR$(S$,7);
140 GOSUB 500
150 A$:&SLS$(S$,7,X$): PRINT 11&SLS$(S$,7,X$)";
160 GOSUB 500
170 A$:&SLT$(S$,X$): PRINT 11&SLT$(S$ 1X$)";
180 GOSUB 500
190 A$:&SRJ$(S$,X$): PRINT "&SRJ$(S$,X$) 11 ;

200 GOSUB 500
210 A$:&SRR$(S$,7): PRINT 11&SRR$(S$,7)";
220 GOSUB 500
230 A$:&SRT$(S$,X$): PRINT "&SRT$(S$,X$)";
240 GOSUB 500 .
250 A$:&SSI$(S$,"12345",7):

PRINT 11&SSI$(S$,"123!15",7)";
260 GOSUB 500
270 A$:&STC$(S$,20 1X$): PRINT "&STC$(S$,20,X$)";
280 GOSUB 500
290 A$:&STJ$(S$,20,X$): PRINT 11&STJ$(S$,20,X$)";
300 GOSUB 500
310 A$:&STP$(S$,X$): PRINT "&STP$(S$,X$)";
320 GOSUB 500
330 END
500 PRI~T "=";TAB(20);"-->";A$;"<--"
510 RETURN

The results from running the above program are shown below:

>RUN
ItlFUIITE BASIC - VERSION 1 .O - COPYRIGHT 1979,

RACET COMPUTES
OK
S$:
&SBJ$(S$,X$):

--> ABC .. DE.FGH ... IJ <--
-->ABC .. DE.FGH .. ,IJ<--

·26-

&SDS$(S$,7,2): --> A .. DE.FGH ... IJ <--
&SIV$(S$): --> JI ... HGF.ED .. CBA <--
&SLJ$($$,X$): -->ABC .. DE.FGH ... IJ <--
&SLR$(S$,7): -->C .. DE.FGH ... IJ AB<--
&SLS$(S$,7,X$): -->C .. DE.FGH ... IJ <--
&SLT$(S$,X$): -->ABC .. DE.FGH ... IJ <--
&SRJ$(S$,X$): --> ABC .. DE.FGH ... IJ<--
&SRR$(S$,7)= -->.IJ ABC .. DE.FGH .. <--
&SRT$(S$,X$): --> ABC .. DE.FGH ... IJ<--
&SSI$(S$,"12345",7):

--> AB12345C .. DE.FGH ... IJ <--
&STC$(S$,20,X$): --> .. ABC .. DE.FGH ... IJ .. <--
~STJ$(S$,20,X$): -->ABC ... DE .. FGH IJ<--
&STP$(S$,X$): -->ABC.DE.FGH.IJ<--
READY

B. String Translation Functions
SCL, SCU, STL

1. Description - These functions perform character by
character translation of one character string into another. The
functions SCL and SCU translate characters between lower case and
upper case character sets. The STL function allows the user to
specify not only the character translation to be performed, but
also which characters are to be translated.

The SCL and scu functions translate characters as shown
below:

Orig SCL scu
Dec/(Hex) Dec/(Hex) Dec/(Hex)

--------- --------- ---------0 - 63 0 - 62 0 - 63
(00 - 3F) (00 - 3F) (00 - 3F)

64 - 95 96 - 127 64 - 95
(40 - 5F) (60 - 7F) (40 - 5F)

96 - 127 96 - 127 64 - 95
(60 - 7F) (60 - 7F) (40 - 5F)

128 - 255 128 - 255 128 - 255
(80 - FF) (80 - FF) (80 - FF)

The string translate function STL can be used to translate
selected characters. The general format of this function is:

&STL$(S$,T$ <,U$>)

T$ contains a list of characters that, if found within S$, will
be translated to the corresponding character in U$. If U$ is not
specified it is assumed to be the character string containing all
256 characters (0-255) in sequence.

2. Example Program - The example program below illustrates
the use of the above translate functions:

-27-

5 DEFUSR:&Hxxxx: PRINT USR(l): CLEAR 1000
10 S$: 1·11.BCr. efgh IJKL r.mop 1234 #$S&"
20 LPRINT "S$:";TAB(10);"-->";S$;"<--"
30 LPRINT "&SCU$(S$)";" -->";&SCU$(S$);"<--"
40 LPRINT "&5CL$(S$)";" -->";&SCL$(S$);"<--"
50 LPRINT ST~ING$(45,"-")
60 S$:"ABCD": T$:"YAZD": U$:"1234": GOSUB 500
70 S$:"ABCD 11 : T$:"WXYZ": U$:"1234": GOSUB 500
80 S$: 11 ABCD 11 : T$:"DCB": U$:"1234": GOSUB 500
90 S$:"AB": T$:"ABYZ": U$:"1234": GOSUB 500
100 S$:"ABC:: 11 : T$:"YAZD 11 : U$:"4321": GOSUB 500
110 END
500 LPRINT "$~-="; S$;TAS(9); "T$:11 ;T$;TAB(17); "U$:" ;U$
510 LPRINT TAB(25); 11&STL$(S$,T$,U$): 11 ;

TAB(42);&STL$(S$,T$,U$)
520 LPRINT TAB(42);&SX2$(&STL$(S$,T$))
530 RETURrl

The results froo. ~unning the above program are shown below:

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
OK
S$: -->ABCD efgr. IJKL mnop 1234 #$S&<-­
&SCU$(s$J -->A~CD EFGH IJKL HNOP 1234 #$S&<-­
&SCL$(s$) -->a~cd efgh ijkl mnop 1234 #$S&<--

S$:ABCD T$:YAZD U$:1234 &STL$(S$ 1T$ 1U$): 2BC4
&STL$(S$,T$): 01 42 42 03

S$:ABCD T$:WXYZ U$:123~ &STL$(S$,T$,U$): ABCD
&STL$(S$,T$): 41 42 43 44

S$:ABCD T$:DCB U$:1234 &STL$(S$,T$lU$): A321
&STL$(S$,T$J: 41 02 01 00

S$:AB T$:ABYZ U$:1234 &STL$(S$,T$,U)= 12
&STL$(S$,T$): 00 01

S$:ABCD TS:YAZD U$:4321 &STL$(S$,T$!U$): ~~C1
&STL$(S$,T$J= 01 112 113 03

READY

The character string in Line #10 of the BASIC program is ~hown in
upper/lower case. Normally BASIC displays all keyboard inp~t in
upper case - even if the shift keys are used.

The first part of the exacple illustrates the upper/lower
translation. In this example upper case characters are
translated to lower case by SCL, and lower case to upper case by
SCU. All other characters remain unchanged.

The second part of the example show the use of the STL
function. The results of the STL function where U$ is not
supplied is shown printed in Hex. This is accomplished by the
use of function SX2$(See H. below). This was necessary since the
default U$ contains the low ASCII codes 0-3 which are special
non-printing characters(Note: A:41, B:42, C:43, and D:44 in
Hex).

-28·

T$ and U$ in the first example of sn. indicate the following
translation is to be performed on S$:

From
T$

y
A
z
D

Others

To
U$

1
2
3
4

Unchanged

For S$:"ABCD" only "A" and "D" are in the above translation
table, giving the result as "2BC4". The other examples
illustrate additional combinations.

C. String and Data Compression Functions
SC4, SCS, SC6, SC7, SCP, SCPM
SD4, SD5, SD6, S07, SDP, SDPH

1. Description - The purpose of these functions is reduce
the data storage requirements for certain types of information.
The "C" mode routines compress data, while the corresponding "D"
routines decompress the data back to the original format.

The SC4-SC7 and corresponding SD4-SD7,series compresses data
by packing the data in groups smaller than the normal 8-bit byte.
This requires that the data conform to certain character ranges.
For example, SC4/SD4 assumes that only the characters "0","1",

"9"," ","+","-","·","D","E" are in the strings to be
compressed(n1.111eric data). Any other characters in this case will
be translated to blanks.

The SCP/SDP and SCPM/SDPM functions pack data by special
encoding of repeated characters. The SCP/SOP are used with
character strings. SCPM/SDPM work directly with data in memory.

The user should be aware that the compressed data may contain
ASCII control codes. This prohibits use of sequential
Input/Output for storing the compressed data on disk. Random I/0
techniques, however, can still be used. Furthermore, compressing
small strings may actually produce larger "compressed" strings.
This is due to the fact that a certain amount of overhead is
required for the compression codes.

2. Program Example - Given below are examples of using the
compression/decompression routines.

5 DEFUSR:&Hxxxx: PRINT USR(1): CLEAR 1000
10 DEFINT I: DIH IA(600)
20 S1$:"0123456789"
30 S2$:11 +-.DE"
40 S3$:"ABCFGHIJKLHNOPQRSTUVWXYZ"
50 S4$:"&',?"
60 S5$:-1#$S()•:@;><,"
70 S$:S1$+S2$+S3$+S4$+S5$
80 C$:&SC5$(S$): D$:&SD5$(C$): PRINT "5C5/SD5";:

GOSUB 500

-29-

90 C$:&SC6$(S$): D$:&SD6$(C$): PRINT "SC6/SD6";:
GOSUB 500

100 C$:&SC7$(S$): D$:&SD (C$): PRINT "SC7/SD7";:
GOSUB 500

110 I

120 S$: 11THIS CONTAINS IMBEDDED BLANKS OR
MULTIPLE••••••••••••• OTHER $$$$$$$$
CHARACTERS"

130 C$:&SCP$(S$): D$:&SDP$(C$): PRINT 11SCP/SDP";:
GOSUB 500

140 I

150 IR:&SCPH(15360,VARPTR(IA(0)),1024)
160 CLS
170 PRINT 11SCPH/SDPH11 ;TAB(15);"LEN(SCREEN): 1024

LEN(IA):";IR
180 PRINT "PRESS ENTER TO RESTORE SCREEN FROM IA"
190 INPUT "AND AGAIN TO CONTINUE";A$
200 IS:&SDPM(VARPTR(IA(0)),15360,1024)
210 IF INKEYS: 1111 THEN 230 ELSE CLS
220 END
230 I

500 PRINT TAB(17);"LEN(S$):";LEN(S$);" LEN(C$):";
LEN(C$); 11 LEN(D$):";LEN(D$)

510 PRINT 11S$: 11 ;S$
520 PRINT 11D$:";D$
530 PRINT STRING$(61,"-")
540 RETURN

The results from running Lines 5-190 are shown below. The screen
display resulting from Line #200 is exactly the same as after
executing Lines 5-190.

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979, RACET COMPUTES
OK
SC4/SD4 LEN(S$): 58 LEN(C$): 30 LEN(D$): 58
C$:0123456789 +-.DEABCFGHIJKLMNOPQRSTUVWXYZ& 1 ,?!#$S()*:@;><,
D$:0123456789 +-.DE

SC5/SD5 LEN(S$): 58 LEN(C$): 38 LEN(D$): 58
C$:0123456789 +-.DEABCFGHIJKLHNOPQRSTUV~~YZ& 1 ,?!#$S()*:@;><,
D$: DEABCFGHIJKLMNOPQRSTUVWXYZ& 1 ,?!#$S()*:@;><,

SC6/SD6 LEN(S$): 58 LEN(C$): 45 LEN(D$): 58
S$:0123456789 +-.DEABCFGHIJKLMNOPQRSTUVWXYZ& 1 ,?!#$S()*:@;><,
D$:0123456789 +-.DEABCFGHIJKLHNOPQRSTUVWXYZ& 1 ,?!#$S()•:@;><,

SC7/SD7 LEN(S$): 58 LEN(C$): 52 LEN(D$): 58
S$:0123456739 +-.DEABCFGHIJKLHNOPQRSTUVWXYZ& 1 ,?!#$S()*:@;><,
D$:0123456789 +-.DEABCFGHIJKLHNOPQRSTUVWXYZ& 1 ,?l#$S()*:@;><,

SCP/SDP LEN(S$): 101 LEN(C$): 73 LEN(D$):101
S$:THIS CONTAINS IMBEDDED BLANKS OR MULTIPLE••
••••••••••• OTHER $$$$$$$$ CHARACTERS
D$:THIS CONTAINS IMBEDDED BLANKS OR MULTIPLE • 1

••••••••••• OTHER $$$$$$$$ CHARACTERS

SCPH/SDPM LEN(SCREEN): 1024 LEN(IA):277

.30-

PRESS ENTER TO RESTORE SCREEN FROM IA
AND AGAIN TO CONTINUE?
READY

Only the displayable characters are illustrated above. A full
conversion table may be created using the following program
segement:

10 FOR I:O TO 255
20 PRINT I,ASC(&SD4$(&SC4$(CHR$(I)))),

ASC(&SD5$(&SC5$(CHR$(I)))),
ASC(&SD6$(&SC6$(CHR$(I)))),
ASC(&SD7$(&SC7$(CHR$(I))))

30 NEXT

D. String Copy Functions
SCPY, SEQU

1. Description - These functions can be used for copying
arrays of strings from one location to another. These functions
are similar to MELC and MEQU as described in Matrix sections B.
and D. above. Both functions copy strings sequentially with the
first subscript varying fastest in multi-dimensional arrays.
SELC will repeat the source array strings(!$) until the
destination array(S$) is full, or "N" elements have been
processed. SCPY only copies available strings from 7S, or until
S$ is full.

2. Program Example - The program below illustrates the use
of SCPY and SEQU. In the first two cases a 2 x 3 string array
T$(DIH T$(1,2)) is copied to a singly dimensioned array S$ which
is larger than T$. The last two cases show only the first four
elements of T$ copied to S$.

5 DEFUSR:&Hxxxx: PRINT USR(1): CLEAR 1000
10 DIM S$(7),T$(1,2)
20 DATA A,C,E,B,D,F
30 FOR I:O TO 7: S$(I): 11 .": NEXT
40 PRINT 11T$(I,J) 11 ;

50 FOR I:O TO 1: PRINT TAB(25);
60 FOR J:O TO 2
70 READ T$(I,J): PRINT T$(I,J);" ";
80 NEXT
90 NEXT: PRINT
100 N:&SCPY(S$,T$): PRINT11&SCPY(S$,T$); :GOSUB 500
110 N:&SEQU(S$,T$): PRINT"&SEQU(S$,T$); :GOSUB 500
120 N:&SCPY(S$ 1T$,4):PRINT11 &SCPY(S$,T$,4)";:GOSUB 500
130 N:&SEQU(S$,T$,4):PRINT11 &SEQU(S$,T$,4)";:GOSUB 500
140 END
500 PRINT TAB(16);"N=";N;TAB(25);
510 FOR I:O TO 7
520 PRINT S$(I);" ";: S$(I)="·"
530 NEXT
540 PRINT: RETURN

-31-

The results from running the above program are shown below:

>RUN
INFI~ITE b1SIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
OK
T$(I,J) A C E

B D F
&SCPY(S$,T$) N: 6 A B C D E F . .
&SEQU(S$,T$) N: 8 A 8 C D E F A 8
&SCPY(S$,T$,4) N: 4 A 8 C D
&SEQU(S$,T$,4) N: 4 A 8 C D
READY

Note that when T$ is smaller than S$ the results are identical.

E. String Count and Search Functions
SCNT, SHSK

1. These functions perform a search of a string and either
counts the number of times a match is found, or the location of
the first match. The SHSK function allows the specification of a
"mask" character, which forces an equal compare wherever
encountered during the search.

2. Program Example - The example below illustrates the use
e£ SCNT and SHSK. In this case a character string is searched
under several different conditions.

5 DEFUSR:&Hxxxx: PRINT USR(1): CLEAR 1000
10 S$:"AAA AAB ABA BAA ABB BBA 888"
20 H$:"."
30 PRINT "S$:";S$;" M$:";M$
40 PRINT" T$ &SCNT(S$,T$) &SHSK(S$,T$)

&SHSK(S$,T$,H$)"
50 PRINT"-------- ------------- ------------

60 T$:"A"
70 !$:"AA"
80 T$:".8"
90 T$:"8."
100 T$:"88A"
110 T$:"BB"
120. T$:"B8."
130 T$:"CCC"
140 END

:GOSUB 500
:GOSU8 500
:GOSUB 500
:GOSU8 500
:GOSU8 500
:GOSUB 500
:GOSUB 500
:GOSUB 500

500 PRINT TAB(4)·T$;
510 PRINT TAB(15~;&SCNT(S$,T$);
520 PRINT TAB(28);&SHSK(S$,T$);
530 PRINT TA8(41);&SHSK(S$,T$,H$)
540 RETURN

-32-

The results from running the above program are shown below:

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
OK
S$:AAA AAS ASA BAA ABB SBA BBB H$:.

T$ &SCNT(S$,T$) &SHSK(S$,T$) &SHSK(S$,T$,M$)

A
AA
.B
B.
SBA
BB
BB.
CCC

READY

11
4
0
0
1
4
0
0

1
1
0
0
21
18
0
0

1
1
6
7
21
18
18
0

Note that after SCNT finds the a match the search continues with
the next character after the beginning of the sucessful match.
This is illustrated in the second case where "4" occurrences of
"AA" are found.

F. Screen Control Functions
SOHL, SDVL, SEHL, SEVL, SSCL, SSCR, SSDN, SSVP

1. Description - These functions are used for drawing,
erasing, and scrolling lines on the display screen. The
draw/erase line functions(SDHL, SDVL, SEHL, SEVL) utililize the
standard graphic X-Y coordinate system. Both horizontal and
vertical lines can be manipulated with these functions. The
scroll screen routines provide both multiple row and column
shifting of contents on the screen.

2. Program Example - Given below is a program that
illustrates both the line drawing/erasing capabilities as well as
screen scrolling.

5 DEFUSR:&Hxxxx: PRINT USR(1): CLEAR 1000: CLS
10 FOR I:O TO 3 'DRAW BOXES
20 I1:I1 6: I2:47-I1: LY:I2-I1+1
30 J1:I1 16: J2:127-J1: LX:J2-J1+1
40 J:&SDHL(J1,I1,LX) 'DRAW TOP HORIZ
50 J:&SDHL(J1,I2,LX) •DRAW BTM HORIZ
60 J:&SDVL(J1,I1,LY) 'DRAW LEFT VERT
70 J:&SDVL(J2,I1,LY) •DRAW RIGHT VERT
80 NEXT
90 PRINT @84,"PRESS KEY TO ERASE 1/2 BOX";:GOSUB 500
100 FOR I:O TO 3 'ERASE 1/2 BOXES
110 I1:I16: I2:47-I1: LY:(I2-I1+1)/2
120 J1:I1 16: J2:127-J1: LX:(J2-J1+1)/2
130 J:&SEHL(J1+LX/2,I1,LX) •ERASE 1/2 TOP
140 J:&SEHL(J1+LX/2,I2,LX) •ERASE 1/2 BTM
150 J:&SEVL(J1,Il+LY/2,LY) 'ERASE 1/2 LEFT
160 J:&SEVL(J2,I1+LY.2,LY) •ERASE 1/2 RIGHT
170 NEXT

-33-

180 PRINT @84,"
190 J:&SSCl,.(8):
200 J:&SSC~(3):
210 J:&SSCR(16):
220 J:&SSUP(6):
230 GOTO 190

PRESS KEY TO SCROLL ";:GOSUB 500
GOSUB 500 •SCROLL LEFT 8
GOSUB 500 'SCROLL DOWN 3
GOSUB 500 •SCROLL RIGHT 16
GOSUB 500 •SCROLL UP 6

500 IF INKEY$:"" THEN 500 ELSE RETURN

The results from running the above program are shown below.
Figure(1) shows the display after running Lines #5-90. Figure(2)
is produced by Lines #100-180. Pressing a key for each of Lines
#190-230 will step shift the screen counter clockwise and off the
screen diagonally to the right.

l'IIESS IEY 10 EIIASfYt IIOll

~
Ir PIIESS •EYTOSCIIOl~

1r 77
r,

Figure(1) - Draw/Erase Example Figure(2) - Scroll example.

G. Absolute String ~:anipulation Functions
SABP, STIN, SVPS

1. Description - These functions are used for setting up and
processing string data directly in memory. The SABP function
initializes a string variable to point anywhere in memory. STIN
stores data from one string into an existing string. SVP$
fetches a string from memory. Several important concepts about
storage of strings in memory is first presented, followed by
details of the functions.

Character strings in the Radio Shack Basic consist of the
actual string data and a special 3-byte pointer. The pointer
indicates both the length of the string and the actual starting
location of the string data in memory. Consider the following
two BASIC statements:

A$:"THIS STRING DATA IS HERE"
B$:A$ + "IN STRING SPACE"

In both cases the three byte string pointers associated with A$
and B$ are maintained in the internal symbol table. The string
data for A$ is the actual program text. The data for B$,
towever, is located in a special "string space" area. The reason
for this is that the data was created during program exection.

A third type of string storage is used for strings associated
with the FIELD statement. The string data associated with FIELD
strings is located in the random I/0 buffers .

. 34.

It is important to realize that the actual location of string
data in the "string space" area may change at any moment. The
location of the other two types of string data are fixed The
SABP and SVP functions extend the location or strings to anywhere
within memory. "String Space" should, however, NOT be referenced
by function SABP, since that area is under constant
reorganization by BASIC.

SABP is used to initialize the string pointer associated with
a string variable name to point anywhere in memory. The absolute
memory location and length must be specified as arg1.1nents along
with the variable name. The string variable may either be a
scalar or an element of a string array, A typical example or the
use of SABP is as follows:

10 A$:""
20 I:&SABP(A$,15360,64)
30 DIM B$(10)
40 I:&SABP(B$(3),15363,5)

This example specifies that A$ is overlayed on the first 64
charaqters of the display screen. Similarly, B$(3) will be in
the same general area, but consists of only 5 characters. Note
that the same area in memory can be associated with several
strings at the same time. The string variable names(A$,B$) must
be activated prior to use in the SABP function call. This is
accomplished in Lines #10 and #30 above, although any executable
statement would be acceptable. The return value from SABP is the
address of the string pointer(same as VARPTR(A$) or VARPTR(B$(3)
above).

Function SVP$ returns a character string containing data from
anywhere in memory. The data is copied into the dynamic "String
Space" area and is processed as any other character function such
as HID$ and CHR$. For example:

10 A$:&SVP$(15360,64)

would also access the first 64 characters of the display screen.
The major difference between SABP and SVP$ is that SABP creates a
permanent association between a variable name and memory, while
SVP$ is only transient reference to memory.

Function STIN provides the capability of storing string data
directly in the same space occupied by an existing string. A
BASIC statement of the form:

10 A$:"ABCD .. GHIJ"
20 A$:LEFT$(A$,4) +"XX"+ RIGHT$(A$,4)

would create three different strings in "String Space"(LEFT$
part, LEFT$ + "XX", and the final result). This results in a
considerable amount of overhead in the system. STIN, however,

.35-

can insert the data directly in the original string, as shown
below:

30 I:&STIN(A$,"XX",5,2)

The use of this technique this eliminates string reorganization
problems commonly encountered, Special care, however, must be
taken where the data is stored. In the above example the string
data for A$ is in the BASIC program area. The actual BASIC
program will be changed. Illegal characters and quote marks(")
when inserted into program space area may cause later
difficulties.

2. Program Example - The example below illustrates the use
of these functior.s for manipulating strings directly on the
display screen. A name and address format is created, with
string overlayed on the string. These strings are used for
initializing the areas, reading, and storing input data.

5 DEFUSR:&Hxxxx: PRINT USR(1): CLEAR 5000
10 DEFINT A-Z
20 DIM !;F$(4) ,ND$(4) ,DA(4) •SCREEN LOCATIONS
30 DATA 15360,4,15365,25,15424,7,15432,25
40 DATA 15488,4,15493,15,15509,5,15515,2
50 DATA 15520,3,15525,5
60 BL$:STRING$(25, 11 ") •BLANKS STRING
70 FOR I:O TO 4 1 !NIT SCREEN LOC
80 READ IA,IL,JA,JL: DA(I):JA
90 J:&SABP(NF$(I),IA,IL): J:&SABP(ND$(I),JA,JL)
100 NEXT
110 CLS
120 I:&STIN(NF$(0),"NAME"):
130 I:&STIN(NF$(2),"CITY11):

140 I:&STIN(NF$(4),"ZIP11)

150 PRINT @512,""
160 INPUT "ENTER NAME"rNH$:

I:&STIN(ND$(0),NH$J

'WRITE NAME FIELDS
I:&STIN(NF$(1),"ADDRESS")
I:&STIN(NF$(3),"STATE")

•INPUT & DISPLAY

170 INPUT "ENTER ADDRESS";AD$:
I:&STIN(ND$(1),AD$)

180 INPUT "ENTER CITY";CT$:
I:&STIN(ND$(2),CT$)

190 INPUT "ENTER STATE";ST$:
I:&STIN(ND$(3),ST$)

200 INPUT "ENTER ZIP";ZP$:
I:&STIN(ND$(4),ZP$)

210 PRINT @384, &SVP$(DA(0),5)+&SVP$(DA(1),5)+
&SVP$(DA(2),5)+&SVP$(DA(3),5)+&SVP$(DA(4),5)

220 INPUT "PRESS ENTER TO CLEAR DATA & REPEAT";X$
230 FOR I:O TO 4: J:&STIN(ND$(I),BL$): NEXT
240 GOTO 150

The screen contents after processing an entry is shown below:

NAME JOHN J. SMITH
ADDRESS ANYWHERE USA
CITY ANY CITY USA STATE HI

·36-

ZIP 123115

JOHN AHYWHAHY CHI 12345
PRESS ENTER TO CLEAR DATA & REPEAT

ENTER NAME? JOHN J. SMITH
ENTER ADDRESS? ANYWHERE USA
ENTER STATE? MISSISSIPPI
ENTER ZIP? 123456789

Lines #10-100 read in the absolute memory locations of the name
fields and associated data fields. Function SABP is used to
point elements of arrays HF$ and HD$ to these locations. Lines
#120-140 store the character data directly on the screen. Lines
#160-200 allows the user to input data and then stores it in the
pre-defined screen fields. Note that only the specified string
sizes are moved. Line #210 shows the use of SVP$ to extract data
directly from the screen. Line #230 is used to clear just the
data fields to blanks(BL$).

H. String Utility Functions
SRV$, SX1$, SX2$

1. Description - The string utility function perform the
following:

SRV$ Creates a string composed of a random selection
of characters.

SX1$ Creates the hexidecimal representation of the
bytes in the source argument. Two hexadecimal
characters are created for each byte in the
original data.

SX2$ Creates the hexidecimal representation of the
bytes in the source argument. Two hexadecimal
characters followed by a blank are created for
each byte of data in the original data.

The SX1$ and SX2$ functions can create hex representations for
integer, single precision, double precision, or character string
arguments. In addition, the contents of a specified location in
memory can also be converted to hexadecimal. The resulting
hexadecimal characters are in the exact order as contained in
memory. For Integers this will be the lowest significant byte
followed by the highest significant byte.

2. Program Example - Given below is a program illustrating
these three functions.

5 DEFUSR:&Hxxxx: PRINT USR(1): CLEAR 1000

10 S$:&SRV$(6,65,67)
20 IS:12345
30 Al:1.23456
40 D#:1.23456789012345
50 PRINT "S$:";S$;" IS:";IS;" Al:";AI;" D#:";D#
60 PRINT "&SX1$(S$):";&SX1$(S$)
70 PRINT "&SX2$(S$):";&SX2$(S$)
80 PRINT "&SX1$CIS):";&SX1${IS)

.37.

90 PRINT."&SX2$(IS):";&SX2$(IS)
100 PRINT "&SX1$(Al)=";&SX1$(AI)
110 PRINT "&SX2$(Al):";&SX2$(AI)
120 PRINT "&SX1$(D#):";&SX2$(D#)
130 PRINT 11 &SX2$(D#):";&SX2$(D#)
140 PRINT: PRINT 11 &SX1$(16416,2):";&SX1$(16416,2)
150 PRINT 11 &SX2$(16416,2):";&SX2$(16416,2)
160 END

The results from running the above program are shown below.

>?.UN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTF.S
OK
S$:AACCBCC IS: 12345 Al: 1.23456 DI: 1,2345678901245
&SX1$(S$):414343424343
&SX2$(S$):41 43 43 42 43 43
&SX1$(U):3930
&SX2$(U):39 30
&SX1$(Al):OF061E81
&SX2$(Al):OF 06 1E 81
&SX1$(D#):E8CE621452061E81
&SX2$(D#):E8 CE 62 14 52 06 1E 81
&SX1$(16416,2):CF3F
&SX2$(16416,2):CF 3F
READY

The results for S$ will vary from run to run since the random
function &SRV is used to generate the string. Note that the
integer 12345 is represented in . lower significant byte first
format(The value 12345 in Hex is 3039), When two arg1.1Dents are
used with &SX1$ or &SX2$, the first is an absolute memory address
followed by a length. The last two examples show finding the
absolute address of the screen cursor contained at memory
location 16416(The cursor address will be between 3COO to 3FFF in
Hex).

I. Sort Functions
SRTC, SRTV

1. Description - These two functions are used for sorting
data stored in memory. The character string sort function SRTC
is used for sorting a single character string array. The
multi-variable sort function SRTV is used for sorting a connected
group of arrays of any type. Multiple sort-key fields, as well
as ascending/descending sort order, may be specified for both
SRTC and SRTV.

SRTC sorts a character string array where each element
(record) contains one or more sort-key fields. The following
record format is typical of many applications:

-38-

NAME ADDRESS CITY ST ZIP
(1) (17) (33) (41) (46)

--------------- --------------- -------
SMITH AB 101 HAIN ST. ORANGE CA 92665
JONES TA 222 1ST ST. BLUE HI 40229

:
WILLIAMS AQ 321 CROSS ST. PINK NY 01022

For SRTC each data record is stored as a single element in a
character string array. Five fields are shown in each data
record in the above example. One or more of these fields could
be selected as "sort-key" fields for a particular sorting
application. For example, the sort sequence STATE(ascending),
CITY(descending), followed by NAME(ascending) could be
specified.

Sort-key field information for SRTC is contained in the
integer array argt111ent IE. The first element of IE indicates the
number of sort fields. This is followed by pairs of elements in
IE indicating the location, length, and sort ascending/descending
sequqence for each sort field. The array IE for the above
example of STATE(asc), CITY(desc), and HAME(asc) would be:

IE(I)
I Value Description

0
1
2
3
4
5
6

3
41
2

-33
8
1
16

Three sort fields specified.
St.art location of STATE field(Asc).
Length of STATE field.
Start location of CITY field(Desc).
Length of CITY field.
Start location of NAME field(Asc).
Length of NAME field.

Note that each sort field requires two entries. The first
specifies the length and ascending/descending sort status.
Positive values indicate ascending sort and negative values for
descending sort sequence. The second entry of the pair indicates
the number of characters in each field. All remaining
unspecified fields will be carried along in the sort.

SRTV is used for sorting a group of singly dimensioned
arrays, each connected element-by-element. One or more integer,
single precision, double precision, or character string arrays
can be in the group. For example, consider the case of four
arrays as follows:

Array Name Type Description

---------- ------------- ----------------------NH$ Character Name array
SX$ Character Sex code(H/F) array
IG Integer Age array
WT Single Pree Weight array

-39-

These arrays can be connected to form a group where each sort
record consists of corresponding elements from each array.
Figure(1) below illustrates connecting the four arrays, each
dir,1ensioned to a maximum of eight elements (0 - 7):

DIM NNS 1 7l . sxsm . IGl7l • wrm
0 "ROH" "M" 46 165

1 "AAA".!\" "F" 39 103
Section to {: be

sorted

"0tRtS•

•we·
"TMrr· ;

:- ¥ · .• , IS •. ua.:<"
.. ':llw ' • B ., ... ,.,. ,. '..,14'·':' .•
·, . .,. .•. . :'., 11 ;·~_-;·· • ---~-?

5 ·sco:r· "M" 39 160
6

7

Figure(1) . Example of sort group.

Each array is considered to be a sort-key field. The order in
which the arrays are specified in the group determines which
sort-key has higher preceder.ce.

SRTV req:.:ires the user to specify which elements(are to be
grouped for sorting, and the ascending/descending sequence of
each :;ort-1,ey field. This is accomplished by use of a sort
para~eter spec i fication stri~g(S$). This single character string
contains the r.arnes of the arrays to be grouped along with
ascending(+) or descendir.g(-) information. This is best
illustrated uith several exa:ples:

S$ Ce script ion

+NM$,-SX$,+IG,WT The NM$ field will be the primary
sort field in ascending order(+).
SX$(descending -), IG(ascending +>
will be secondary sort-keys. WT
will be carried along in the sort
without order checking.

+SX$,-IG,MM$,WT SX$ will be the primary Case +)
sort field, then IG(desc -). NH$
and WT are included in the sort.

-IC,-SX$ Only IG(desc -) and SX$(asc +)
sorted. NH$ and WT were not used.

From the above it can be seen that it is only necessary to change
the contents of S$ to perform a variety of sorts. In fact, S$
can be placed in an INPUT statement allowing specification at
execution time.

The range of elements to be sorted by both SRTC and SRTV are
specified by argl.llilents II and JJ. These indicate the starting
subscript and ending subscript for the sort. For the application
shown in Figure(1) above, the records starting with "CHRIS"
through "TAMMY" are indicated to be sorted. This corresponds to
the range of II:2 through JJ:4. All elements preceeding II will
be left unchanged. All elements after JJ will also be left
unchanged, except for the last TWO elements in each array. These
two elements are used internally by the sort program, and will be
set to null strings(for character arrays) upon return. The user
MUST dimension each array at least TWO larger than the maximum
value of JJ to be used.

-40-

2. Program Example - Given below are several examples of
using both SRTC and SRTV.

a. SRTC Example

5 DEFUSR:&Hxxxx: PRINT USR(1): CLEAR 10000 DEFINT I
10 DATA " 1 2 3 4

5"
20 DATA "1234567890123456789012345678901234567890

1234567890"
30 DATA "SMITH AB101 HAIN ST. ORANGE

CA 92665"
40 DATA "JONES TA222 1ST ST. BLUE

HI 40229"
50 DATA "BLACK CD222 2ND ST. GREEN

HI 40229"
60 DATA "WHITE AE222 2ND ST. BLUE

HI 40229"
70 DATA "DOE J 102 HAIN ST. ORANGE

CA 92665"
80 DATA "SMITH AB 123 NORTH ST. GREEN

KA 55346"
90 DIM NA$(10),I1(10),I2(10)
100 READ H1$,H2$ 'READ HEADERS
110 FOR I:O TO 5 'INIT SORT DATA
120 READ NA$(!)
130 NEXT
140 DATA 3,41,2,-33,8,1,16 1 SORT-FIELD #1 INFO
150 FOR I:O TO 5
160 READ I1(I)
170 NEXT
180 PRINT "SORT BY +STATE, -CITY, ; NAME";
190 IR:&SRTC(NA$,0,5,I1): GOSUB 500
200 DATA 2,46,5,1,.16 1SORT-FIELD #2 INFO
210 FOR I:O TO 5
220 READ IZ(I)
230 NEXT
240 PRINT "SORT BY +ZIP, +NAME";
250 IR:&SRTC(NA$,1,4,I2): GOSUB 500
260 END
500 PRINT TAB(31);"SORT RETURN CODE=";IR
510 PRINT H1$: PRINT HZ$
520 FOR I:O TO 5: PRINT NA$(I): NEXT
530 PRINT STRING$(50,"-")
540 RETURN

The results from running the above program are shown below:

>RUN

INFINITE BASIC - VERSION 1,0 - COPYRIGHT 1979,
RACET COMPUTES

OK
SORT BY +STATE, -CITY, +NAME SORT RETURN CODE: 0

1 2 3 4 5
12345678901234567890123456789012345678901234567890
DOE J102 HAIN ST, ORANGE CA 92665
SMITH AB101 MAIN ST. ORANGE CA 92665
SMITH AB123 NORTH ST. GREEN KA 55346

-41-

BLACK
JONES
WHITE

CD222 2ND ST.
TA222 1ST ST.
AE222 2ND ST.

GREEN
BLUE
BLUE

MI 40229
MI 40229
MI 40229

SORT BY +ZIP, -NAME SORT RETURN CODE: 0
1 2 3 4 5

12345678901234567890123456789012345678901234567890
DOE J102 MAIN ST. ORANGE CA 92665
BLACK CD222 2ND ST. GREEN MI 40229
JONES TA222 1ST ST. BLUE MI 40229
SMITH AB123 NORTH ST. GREEN KA 55346
SMITH AB101 MAIN ST. ORANGE CA 92665
WHITE AE222 2ND ST. BLUE MI 40229

READY

The above example sorts the character string array NA$ in two
different sequences. The first sorts all six initialized
elements in order by STATE(ascending), CITY(descending), and
finally by NAHE(ascending). The second sequence sorts only the
middle elements(l-4) in order by ZIP(ascending) and
NAME(ascending). In this case note that elements O and 5 do not
change.

b. SRTV Example.

5 DEFUSR:&Hxxxx: PRINT USR(l): CLEAR 10000
10 DATA RON,M,46,165
20 DATA ARANA,F,39,103
30 DATA CHRIS,M,15,140
40 DATA ERIC,M,18,140
50 DATA TAMHY,F,12,95
60 DATA SCOTT,M,39,160
70 DIM NM$(7),SX$(7),IG(7),WT(7)
80 FOR I:O TO 5 '!NIT DATA TO BE SORTED
90 READ NM$(I),SX$(I),IG(I),WT(I)
100 NEXT
110 PRINT "SORT(2-4) BY";: S$:"+NM$,-SX$,+IG,WT"
120 IR:&SRTV(S$,2,4): GOSUB 500
130 PRINT "SORT(0-5) BY";: S$:"+SX$,-IG,NM$,WT"
140 IR:&SRTV(S$,0,5): GOSUB 500
150 PRINT "SORT(0-5) BY";: S$="-IG,-SX$"
160 IR:&SRTV(S$,0,5): GOSUB 500
170 END
500 PRINT" ";S$;TAB(36);"RETURN CODE:";IR
510 PRINT" I NM$(!) SX$(I) IG(I) WT(!)"
520 PRINT"---------- ------- ------- -------•
530 FOR I:O TO 7
540 PRINT I;TAB(5);NM$(I);TAB(14);SX$(I);TAB(23);

IG(I);TAB(832);WT(I)
550 NEXT
560 PRINT STRING$(50,"-")
570 RETURN

-42-

The results from running the above program are shown below

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979,

RACET COMPUTES
OK
SORT(2-4) BY +NM$,-SX$,+IG,WT RETURN CODE: 0
I NM$(!) SX$(I) IG(I) WT(I)

--- ------- ------- ------- -------
0 RON M 46 165
1 ARANA F 39 103
2 CHRIS M 15 140
3 ERIC M 18 140
4 TAMMY F 12 95
5 SCOTT H 39 160
6 0 0
7 0 0

SORT(0-5) BY +SX$,-IG,NH$,WT RETURN CODE :0
I NM$(!) SX$(I) IG(I) WT(I)

--- ------- ------- ------- -------
0 ARANA F 39 103
1 TAMMY F 12 95
2 RON H 46 165
3 SCOTT M 39 160
4 ERIC M 18 140
5 CHRIS M 15 140
6 0 0
7 0 0

---SORT(0-5) BY -IG,-SX$ RETURN CODE :0
I NM$(!) SX$(I) IG(I) WT(I)

--- ------- ------- ------- -------
0 ARANA H 46 103
1 TAMMY M 39 95
2 RON F 39 165
3 SCOTT M 18 160
4 ERIC M 15 140
5 CHRIS F 12 140
6 0 0
7 0 0

---READY

Lines #110-120 sort only elements 2-4 or the connected arrays
NH$, SX$, IG, and WT. NM$ was the primary sort key as can be
seen from the results. Secondary sort keys of descending SX$ and
ascending IG were specified, although not needed since no
identical NM$ elements were present in data. Note that elements
0,1, and 5 were not involved in the sort. Elements 6 & 7 were
used by the sort for work space, but reset to zero(null) before
returning to the user.

Lines #130-140 sort all initialized elements 0-5. In this
case SX$ is the primary key. Since repeating elements of SX$
were found, the secondary keys of descending IG and ascending NM$
were used to determine the final order.

-43-

Lines #150-160 show only two of the arrays connected, with IG
as the primary key and SX$ as the secondary key(both descending
sequence). Arrays NM$ and WT were not involved in the sort, and
therefore were not changed.

c. SRTV/Disk Sort Example

5 DEFUSR:&Hxxxx: PRINT USR(l): CLEAR 10000
10 DEFINT I-N
20 DIM R$(3),KY$(129),IX(129)
30 OPEN "R",1,"SORT/DAT:1 11 'OPEN & SET FIELDS
40 FOR I:O TO 3: FIELl, I 1 64 AS D$,63 AS R$(I):NEXT
50 IF LOF(l)<>O THEN 120 'SKIP IF FILE EXISTS
60 FOR I:O TO 127 'CREATE AND WRITE
70 J:I/4: K:I-J 1 4 'RANDOM RECORDS
80 LSET R$(K):&SRV$(9,65,69)+" "+&SRV$(10,78,82)+

"P+STRING$(42, 11 • 11)

90 IF K:3 THEN PUT 1,J+;l •BLOCKED 4 REC/SECTOR
100 NEXT
110 IF K <> 3 THEN PUT 1,J+;1
120 PRINT "READ FILE & EXTRACT KEYS"
130 FOR I:O TO 127 'READ & SAVE KEYS
140 J:I/4: K:I-J 1 4 •ALONG WITH CORRES-
150 GET 1 , J+; 1 1 PONDING RECORD INDEX
160 KY$(I):MID$(R$(K),10,10)
170 IX(I):I
180 NEXT
190 PRINT "SORT KEYS, CARRYING ALONG RECORD INDEX"
200 IR:&SRTV("+KY$, IX", 0, 127)
210 PRINT "INDEX SORTED - RETURN CODE:";IR
220 PRINT "FETCH & PRINT RECORDS IN SORTED ORDER"
230 FOR I:O TO 127 'SCAN INDEX FILE
240 II:IX(I) 'CALCULATE CORRES-
240 J:II/4: K:II-J1 4 'PONDING SECTOR/REC
240 GET 1 , J+; 1 'FETCH SECTOR
250 PRINT R$(K) 'PRINT RECORD
260 NEXT
270 CLOSE
280 END

The partial results from running the above program are shown
below:

>RUN
INFINITE BASIC - VERSION 1.0 - COPYRIGHT 1979

RACET COMPUTES
OK
READ FILE & EXTRACT KEYS
SORT KEYS, CARRYING ALONG RECORD INDEX
INDEX SORTED - RETURN CODE= 0
ABDDBBCCB NNOPNRPPRR etc
DDDBEDACB NNPRPOQRQN
DDBCAAAAD NNQPRQOQQO
DDDBDACBA NNRQPRONOO ••••••·•••••••••••••••••
BCCEACDDC NOOORQOQRQ
ECDBDCABD NOQNQORRNP
DEEACCDDE NORRQORORO

. . . .
CBEEBDBAE RRONPNQNRP

.44.

DBCACECAC RRORPNPOPP
CEDCACCDE RRORPPPRQR
EDEEBBECD RRQOONQQRQ
READY

This more complicated example illustrates the use of SRTV for
sorting a disk file. Large amounts of data encountered in many
applications can be stored as a disk file. SRTV cannot be used
directly if the file is larger than available memory. Usually,
however, only a small portion of a data record is examined during
sorting, such as a NAME, ZIP, or ACCT# fields. This example
illustrates the use of an "indexed" sort technique, where only
the sort fields are extracted from the record and sorted.
Information is carried along in the sort to allow accessing the
remainder of data in each record.

The example above creates a sample file containing 64 byte
records packed 4/sector. The function &SRV$ is used to generate
random strings for illustration purposes(Line #80). In this case
it is assumed that the sort field consists of characters 10-19.
Lines #10-110 create the file unless it already exists. Lines
#120-180 reads each record and extracts just the sort key, saving
it in array KY$. The corresponding record index number is also
saved in array IX. The extra calculations in Lines 70 & 140
illustrate the techniques for packing records.

Line #200 performs the sort of the sort fields. In this case
the sort parameter string ("+KY$, IX") specifies to sort the
connected arrays KY$(ascending order) and carrying along array
IX. Lines #230-280 selects the next element from the array IX to
find the next record in sort sequence. This is used to access
the original disk file and print the corresponding record.

Several variations of this technique could be used. For
example, two(or more) sort fields such as NAME and ZIP could be
extracted during the initial pass along with the corresponding
index number. SRTV could then be used to create a sorted index
in either NAME or ZIP order. The resulting sorted index files
could also be written to a separate file in order to save
rebuilding the index.

.45.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45

